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Quantifying the preference for amino acids at different sites
Conceptually, our approach is based on the idea that there is an inherent preference for each
amino acid at each site in the protein. For now, we assume that these preferences are entirely
at the amino-acid level and are indifferent to the specific codon (this assumption is probably
not completely accurate, and the study of differential preferences for synonymous codons is an
interesting area for future work). We denote the preference of site r for amino-acid a as πr,a,
where these equilibrium preferences are subject to the constraint∑

a

πr,a = 1, (1)

and where a can range over the naa = 21 values corresponding to all amino acids plus a stop
codon (although in general we expect stop codons to be highly disfavored within the protein).
We define the ratio πr,a/πr,a′ to be the expected ratio of amino-acid a to amino-acid a′ after viral
growth if both are initially introduced into the mutant library at equal frequency. Mutations that
enhance viral growth will have larger values of πr,a, while mutations that hamper viral growth
will have lower values of πr,a. However, note that πr,a/πr,a′ cannot be simply interpreted as the
fitness effect of mutating site r from a to a′: because most clones in our mutant libraries have
multiple mutations, this ratio summarizes the effect of a mutation in the wildtype gene and a
variety of closely related mutants. A mutation can therefore have a ratio greater than one due to
its inherent effect on viral growth or its effect on the tolerance of the protein for other mutations
(or a combination of both). The analysis here does not separate these two factors, but note that
previous experimental work has shown that it is fairly common for one mutation in NP to alter
the protein’s tolerance to a subsequent mutation.

The most naive approach is to set πr,a proportional to the frequency of amino-acid a in the
mutvirus-p1 library divided by the frequency of the mutation in the mutDNA library, and then
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apply the normalization condition in Equation 1 to get the proportionality constant. However,
such an approach is problematic for several reasons. First, it fails to account for other sources
of error and mutation (PCR, reverse-transcription, etc) that inflate the observed frequencies of
some mutations. Second, the libraries contain finite numbers of counts, and estimating ratios by
dividing counts from finite samples is a notoriously statistically biased approach. For example,
in the limiting case where a mutation is counted once in the mutvirus-p1 library and not at
all in the mutDNA library, the ratio is infinity – yet in practice such low counts give us little
confidence that the enough variants have been assayed to estimate the true effect of the mutation.

To circumvent these problems, we use a Bayesian approach that explicitly accounts for the
sampling statistics. We begin with prior estimates that the error and mutation rates for each site
are equal to the library averages. We specify likelihood functions that give the probability of
observing a set of counts given the πr,a values for that site and the various error and mutation
rates. We then estimate the posterior distribution of the πr,a values by MCMC. This approach
accounts for sources of error and avoids overfitting πr,a when the number counts is low.

We use the counts in the DNA library to quantify errors due to PCR and sequencing. We use
the counts in the RNA library to quantify errors due to reverse-transcription. We assume that
transcription of the viral genes from the reverse-genetics plasmids and subsequent replication
of these genes by the influenza polymerase introduces a negligible number of new mutations
relative to the number already present in the plasmid mutant library. The second of these as-
sumptions is supported by the fact that the total mutation frequency in the virus-p1 libraries is
close to that in the RNA libraries. The first of these assumptions is supported by the fact that
stop codons are no more frequent in the RNA libraries than in the virus-p1 libraries – delete-
rious stop codons arising during transcription will be purged during viral growth, while those
arising from reverse-transcription and sequencing errors will not.

At each codon site r, there are ncodon = 64 codons, which we index by i = 1, 2, . . . ncodon.
Let wt (r) denote the wildtype codon at site r. Let NDNA

r be the total number of sequencing
reads at site r in the DNA library, and let nDNA

r,i be the number of these reads that report codon
i at site r, so that

∑
i

nDNA
r,i = NDNA

r . Similarly, let NmutDNA
r , NRNA

r , and Nmutvirus
r be the total

number of reads at site r and let nmutDNA
r,i , nRNA

r,i , and nmutvirus
r,i be the total number of these reads

that report codon i at site r in the mutDNA, RNA, and mutvirus-p1, respectively.
We first consider the rate at which site r is erroneously read to be some incorrect identity

due to PCR or sequencing errors. Such errors are the only source of non-wildtype reads in the
sequencing of the DNA library. For all i 6= wt (r), we define εr,i as the rate at which site r
is erroneously read as codon i in the DNA library. We define εr,wt(r) = 1 −

∑
i 6=wt(r)

εr,i to be

the rate at which site r is correctly read as its wildtype identity of wt (r) in the DNA library.
We therefore have εr,i = E

[
nDNA
r,i /N

DNA
r

]
where E denotes the expectation value. If we define

−→εr = (εr,1, . . . , εr,ncodon) and
−−→
nDNA
r =

(
nDNA
r,1 , . . . , nDNA

r,ncodon

)
as vectors of the εr,i and nDNA

r,i

values, then the likelihood of observing
−−→
nDNA
r given −→εr and NDNA

r is

Pr
(−−→
nDNA
r | NDNA

r ,−→εr
)
= Mult

(−−→
nDNA
r ;NDNA

r ,−→εr
)

(2)
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where Mult denotes the multinomial distribution.
We next consider the rate at which site r is erroneously copied during reverse transcription.

These reverse-transcription errors combine with the PCR / sequencing errors defined by −→εr
to create non-wildtype reads in the RNA library. For all i 6= wt (r), we define ρr,i as the
rate at which site r is miscopied to codon i during reverse transcription. We define ρr,wt(r) =
1−

∑
i 6=wt(r)

ρr,i as the rate at which site r is correctly reverse transcribed. If we ignore as negligibly

rare the possibility that a site is subject to both a reverse-transcription and sequencing / PCR
error within the same clone (a reasonable assumption as both εr,i and ρr,i are very small for
i 6= wt (r)), then εr,i + ρr,i − δi,wt(r) = E

[
nRNA
r,i /N

RNA
r

]
where δi,wt(r) is the Kronecker delta

(equal to one if i = wt (r) and zero otherwise). The likelihood of observing
−−→
nRNA
r given −→ρr , −→εr ,

and NRNA
r is

Pr
(−−→
nRNA
r | NRNA

r ,−→ρr ,−→εr
)
= Mult

(−−→
nRNA
r ;NRNA

r ,−→εr +−→ρr −
−→
δr

)
. (3)

where
−→
δr =

(
δ1,wt(r), . . . , δncodon,wt(r)

)
is a vector that is all zeros except for the element corre-

sponding to wt (r).
We next consider the rate at which site r is mutated to some other codon in the plasmid

mutant library. These mutations combine with the PCR / sequencing errors defined by −→εr to
create non-wildtype reads in the mutDNA library. For all i 6= wt (r), we define µr,i as the rate
at which site r is mutated to codon i in the mutant library. We define µr,wt(r) = 1 −

∑
i 6=wt(r)

µr,i

as the rate at which site r is not mutated. If we ignore as negligibly rare the possibility that
a site is subject to both a mutation and a sequencing / PCR error within the same clone, then
µr,i + εr,i − δi,wt(r) = E

[
nmutDNA
r,i /NmutDNA

r

]
. The likelihood of observing

−−−−→
nmutDNA
r given −→µr , −→εr ,

and NmutDNA
r is

Pr
(−−−−→
nmutDNA
r | NmutDNA

r ,−→µr,−→εr
)
= Mult

(−−−−→
nmutDNA
r ;NmutDNA

r ,−→µr +−→εr −
−→
δr

)
. (4)

Finally, we consider the effect of the preferences of each site r for different amino acids,
as denoted by the πr,a values. Selection due to these preferences is manifested in the mutvirus
library. This selection acts on the mutations in the mutant library (µr,i), although the actual
counts in the mutvirus library are also affected by the sequencing / PCR errors (εr,i) and reverse-
transcription errors (ρr,i). We again ignore as negligibly rare the possibility that a site is subject
to more than one of these sources of mutation and error within a single clone. Let A (i) denote
the amino acid encoded by codon i. Let−→πr be the vector of πr,a values. Define the vector-valued
function

−→
C as −→

C (−→πr) =
(
πr,A(1), . . . , πr,A(ncodon)

)
, (5)

so that this function returns a ncodon-element vector constructed from −→πr . Because the selec-
tion in the mutvirus library due to the preferences πr,A(i) occurs after the mutagenesis µr,i
but before the reverse-transcription errors ρr,i and the sequencing / PCR errors εr,i, we have
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E
[
nmutvirus
r,i /Nmutvirus

r

]
= εr,i+ρr,i+γr×πr,A(i)×µr,i−2×δi,wt(r) where γr =

(∑
i

πr,A(i)µr,i

)−1
=(−→

C (−→πr) · −→µr
)−1

(where · denotes the dot product) is a normalization factor that accounts for
the fact that changes in the frequency of one variant due to selection will influence the observed
frequency of other variants. The likelihood of observing

−−−−→
nmutvirus
r given −→µr , −→εr , −→ρr , −→πr , and

Nmutvirus
r is therefore

Pr
(−−−−→
nmutvirus
r | −→µr,−→εr ,−→ρr ,−→πr , Nmutvirus

r

)
= Mult

(
−−−−→
nmutvirus
r ;Nmutvirus

r ,−→εr +−→ρr +
−→
C (−→πr) ◦ −→µr
−→
C (−→πr) · −→µr

− 2
−→
δr

)
.

(6)
where ◦ is the Hademard (entry-wise) product.

We specify priors over−→εr ,−→ρr ,−→µr , and−→πr in the form of Dirichlet distributions (denoted here
by Dir). For the priors over the mutation rates −→µr , we choose Dirichlet-distribution parameters
such that the mean of the prior expectation for the mutation rate at each site r and codon i is
proportional to the average value for all sites. The average fraction of mutated codons in the
mutDNA library minus the background from the DNA library is 6.1 × 10−3, so the average
mutation rate is µ = 6.1× 10−3/63 = 9.7× 10−5. So we use a prior of

Pr (−→µr) = Dir (−→µr;ncodon · σµ · −−→αµ,r) (7)

where −−→αµ,r is the ncodon-element vector with elements αµ,r,i = µ + δi,wt(r) (1− ncodonµ) and
σµ is the scalar concentration parameter. For a symmetric Dirichlet distribution (which Pr (−→µr)
will in general not be), choosing σµ = 1 makes the distribution completely uniform.

For the priors over εr,i and ρr,i, the Dirichlet-distribution parameters again represent the av-
erage value for all sites, but now also depend on the number of nucleotide changes in the codon
mutation since sequencing / PCR and reverse-transcription errors are far more likely to lead to
single-nucleotide codon changes than multiple-nucleotide codon changes. Let M (wt (r) , i)
be the number of nucleotide changes in the mutation from codon wt (r) to codon i. For ex-
ample, M (GCA,ACA) = 1 andM (GCA,ATA) = 2. The average error rate (estimated from
the DNA library) is ε1 = 5.8 × 10−4/9 = 6.4 × 10−5 for single-nucleotide codon mutations,
ε2 = 8.7×10−6/27 = 3.2×10−7 for two-nucleotide codon mutations, and ε3 = 4.0×10−6/27 =
1.5× 10−7 for three-nucleotide codon mutations. So we use a prior of

Pr (−→εr ) = Dir (−→εr ;ncodon · σε · −→αε,r) (8)

where −→αε,r is the ncodon-element vector with elements αε,r,i = εM(wt(r),i) where we define
ε0 = 1 − 9 × ε1 − 27 × ε2 − 27 × ε3 (for any codon, there are 9 one-nucleotide mutations,
27 two-nucleotide mutations, and 27 three-nucleotide mutations), and where σε is the scalar
concentration parameter.

Similarly, the average reverse-transcription error rates (estimated from the RNA library mi-
nus the DNA library) are ρ1 = 1.9× 10−4/9 = 2.1× 10−5, ρ2 = 1.5× 10−5/27 = 5.6× 10−7,
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and ρ3 = 2.8 × 10−6/27 = 1.0 × 10−7 for one-, two-, and three-nucleotide codon mutations,
respectively. So we use a prior of

Pr (−→ρr ) = Dir (−→ρr ;ncodon · σρ · −−→αρ,r) (9)

where −−→αρ,r is the ncodon-element vector with elements αρ,r,i = ρM(wt(r),i) where we define
ρ0 = 1− 9× ρ1 − 27× ρ2 − 27× ρ3, and where σρ is the scalar concentration parameter.

We specify a symmetric Dirichlet-distribution prior over −→πr (note that any other prior, such
as one that favored the wildtype identity, would implicitly favor certain identities based empir-
ically on the wildtype protein sequence, and so would not be in the spirit of the parameter-free
derivation of the πr,a values employed here). Specifically, we use a prior of

Pr (−→πr) = Dir
(−→πr ;σπ · −→1 ) (10)

where
−→
1 is the naa-element vector that is all ones, and σπ is the scalar concentration parameter.

Setting σπ = 1 gives a uniform prior over all −→πr values, while smaller values favor peaked
distribution and larger values favor equal values for all πr,a elements.

We can now write expressions for the likelihoods and posterior probabilities. Let Nr ={−−→
nDNA
r ,
−−−−→
nmutDNA
r ,

−−→
nRNA
r ,
−−−−→
nmutvirus
r , NDNA

r , NmutDNA
r , NRNA

r , Nmutvirus
r

}
denote the full set of counts

for site r. The likelihood of Nr given values for the equilibrium preferences and mutation /
error rates is

Pr (Nr | −→πr ,−→εr ,−→ρr ,−→µr) = Pr
(−−→
nDNA
r | NDNA

r ,−→εr
)
× Pr

(−−→
nRNA
r | NRNA

r ,−→εr ,−→ρr
)
×

Pr
(−−−−→
nmutDNA
r | NmutDNA

r ,−→εr ,−→µr
)
×

Pr
(−−−−→
nmutvirus
r | Nmutvirus

r ,−→εr ,−→ρr ,−→µr,−→πr
)

(11)

where the likelihoods that compose Equation 11 are defined by Equations 2, 3, 4, and 6. The
posterior probability of a specific value for the equilibrium preferences and mutation / error
rates is

Pr (−→πr ,−→εr ,−→ρr ,−→µr | Nr) = Cr × Pr (Nr | −→πr ,−→εr ,−→ρr ,−→µr)× (12)
Pr (−→εr )× Pr (−→ρr )× Pr (−→µr)× Pr (−→πr) (13)

whereCr is a normalization constant that does not need to be explicitly calculated in the MCMC
approach used here. The posterior over the equilibrium preferences −→πr can be calculated by
integrating over Equation 12 to give

Pr (−→πr | Nr) =
∫ ∫ ∫

Pr (−→πr ,−→εr ,−→ρr ,−→µr | Nr) d−→εr d−→ρrd−→µr, (14)

where the integration is performed by MCMC.
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Equation 14 infers −→πr for a single replicate of the experiment. In practice, we have per-
formed R = 4 replicates (WT-1, WT-2, N334H-1, N334H-2). Let N k

r denote the set of ex-
perimentally observed counts for replicate k. The full set of data for all R replicates is then{
N k
r | 1 ≤ k ≤ R

}
. We use the same equilibrium preferences −→πr for all replicates, since these

preferences are a property of the protein rather than the experiment. However, the error and
mutation rates −→εr , −→µr , and −→ρr are specific to each replicate (denote the replicate-specific vectors
by−→εr

k,−→µr
k, and−→ρr

k), with the replicate-specific prior vectors−−→αµ,rk,−→αε,rk, and−−→αρ,rk determined
from the library averages for that replicate. The reason for making these three vectors and their
priors replicate specific is that each replicate could have different error and mutation rates. The
posterior probability of −→πr and the mutation / error rates for all experimental replicates is

Pr
(−→πr ,−→εr ,−→ρr ,−→µr | {N k

r | 1 ≤ k ≤ R
})

= C ′r ×
R∏
k=1

[
Pr
(
N k
r | −→πr ,−→εr

k
,−→ρr

k
,−→µr

k
)
×

Pr
(−→εr k)Pr(−→ρr k)Pr(−→µrk)]Pr (−→πr) , (15)

where each of the individual likelihoods for the N k
r counts are calculated using Equation 11

and C ′r is a normalization constant that does not need to be calculated when using MCMC. The
posterior over the equilibrium preferences −→πr can be calculated by using MCMC to integrate
over Equation 15 to give

Pr
(−→πr | {N k

r | 1 ≤ k ≤ R
})

=

∫
· · ·
∫

Pr
(−→πr ,−→εr ,−→ρr ,−→µr | {N k

r | 1 ≤ k ≤ R
}) R∏

k=1

d−→εr
k
d−→ρr

k
d−→µr

k
.(16)

We summarize the posterior calculated from Equation 16 by its mean,

〈−→πr〉 =
∫
−→πr × Pr

(−→πr | {N k
r | 1 ≤ k ≤ R

})
d−→πr . (17)

6


